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Abstract—A single-equation solution is presented for solving temperature and heat flux in many finite one-

dimensional bodies with fin effect. When the fin effect is set equal to zero, it yields the temperature and

heat flux in finite one-dimensional bodies. The bodies can be single layer or multilayer. The single-equation

solution is for transient conduction but yields the steady-state solution at large times. A recently developed

alternative Green’s function solution method is used. The Green’s function is calculated using the Galerkin-
based integral method. The examples in this paper are for one- and two-layer bodies.

INTRODUCTION

A RECENT paper [1] introduced a technique for solving
a variety of linear multidimensional thermal con-
duction problems by a single equation. The single
equation solution in this paper modifies the Alter-
native Green’s Function Solution (AGFS) method [1,
2] to include the fin effect. The AGFS uses an auxiliary
source term in the solution equation. The Galerkin-
based Integral (GBI) method [3] yields the Green's
function relation in the AGFS [1]. It is shown that
minor changes will extend AGFS [1] to include the fin
effect. Four thermal conduction examples for one-
dimensional bodies with fin effect are presented. The
method can include multidimensional bodies but this
paper only addresses one-dimensional bodies. The
product method provides the Green’s functions in
some regular multidimensional bodies.

The single-equation solution method applies to the
diffusion equation in various finite bodies and in vari-
ous coordinate systems. The procedure is described
and the accuracy is compared with the exact solution
for a selected case. The observed accuracy is excellent
and exceeds expectations. The single-equation solu-
tion yields accurate temperature and heat flux on a
personal computer immediately after the data are
entered.

The single-equation approach is not limited to fins;
it can yield temperature and heat flux in solid cylin-
ders and spheres for the diffusion equation in bio-
engineering applications. Ignoring the fin effect
results in the solution of standard one-dimensional
conduction problems. The solids under consideration
can be multilayered but only one example considers
a two-layer body. The solution holds for transient
and steady-state problems.

ANALYSIS

The transient diffusion equation for one-dimen-
sional problems used in this paper is

V- k(NVTY4+g(r, ) —w(n)T = p(r)c,(r)0T/0t (1)

where T = T1(r, 1) is the temperature, g the volumetric
heat source, p the density, ¢, the specific heat, &k the
thermal conductivity, and r represents Cartesian,
cylindrical, or spherical coordinates. The term
V+[k(r)VT] on the left-hand side of equation (1), in
this paper, is (1/r")0[k(r)r"dT/dr}/dr, where p =0, 1,
or 2 for Cartesian, cylindrical, or spherical coordi-
nates. The coeflicient p takes other positive real
numbers for fins. The thermophysical properties p(r),
¢,(r), and k(r) are position-dependent density, specific
heat, and thermal conductivity. The term w(r) T is the
fin convective effect.

The alternative Green’s function solution equation
for heterogeneous materials [1] is

T(r,0) =T*(r,0)+

AL

—p(r)e,(r)T*(r'.1)/0t] AV’

1
p(rc,(r)

dr J Glf*+g(r.7)

+ ﬁ P (r) Gl - o[F(r) = T*(r', 0)] dV'}

2
where G = G(r', —1|r, — 1) = G(¥', t|r, 7) is given by

N N N
G(r/* t|r~T) = P(r)"p(") 2 z Z dn/pni

n=17=li=1

xexp [=y, (1=l (F) fi(r).  (3)

The parameters p,, and d,,, are documented in ref. [3].
The fin effect does not change equation (2) or (3) and
the relations given in ref. {1] remain unchanged.

The function T* is an auxiliary function defined
to satisfy the non-homogeneous boundary conditions
but it is not necessarily the steady-state or quasi-
steady-state solution. Only the function T* contains
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geometrical dimensions [m}
a, element of matrix A, equation (11}
A matrix

b, element of matrix B, equation (12)
B matrix

B ratio of 4, /k . hatk,

¢ specific heat [J kg ' K]

a conductance [Wm™ 7 K~ ']

d,, coefficients. equation (3)

d, eigenvector with elements 4, ,. equation
(10)

D matrix with element d,,

1 basis functions

I* function defined in equation (4}

F(r) initial temperature distribution

g energy generation per unit time and per
unit volume [W m™ 7]

G Green’s function, G(#', —1t|r, —1)

h heat transfer coefficient [Wm ™ K ~'}

ij indices
k thermal conductivity [Wm~ 'K ]
L length [m]

m factor, (w/k)™?

n index

N number of eigenvalues

P index

NOMENCLATURE

Pu: element of matrix P

P inverse of transpose of matrix (DB}
¥ radial coordinate
7 dummy variable
S surface

t time [s]

T temperature [K]
7. initial temperature distribution [K]
T, surface temperature [K]

T*  auxiliary solution, e.g. equation (5)

I volume [m?]
W fin factor [Wm ‘K]
X Cartesian coordinate [m].

Greek symbols

o thermal diffusivity fm*s ]

n eigenvalues

I density [kg m~]

T time ; also dummy variable.
Subscripts

1 parameter at small dimension

2 parameter at large dimension

b temperature of the fin at the base

o fluid temperature.

the contribution of non-homogeneous boundary
conditions. The function f*, appearing as a source
term in equation (2), compensates for the arbitrary
nature of 7* and is given by the relation

FHr o) = Vo [V, T, )] —wi(n) T* (4)

where V, implies the derivatives are in r” space. If
F*(r’, 1) = 0 and w(r) = 0, then T*(+", 1) satisfies the
Laplace equation and it is the quasi-steady solution.
Note that the function f*(;’, 7) defined by equation
{4) is unrelated to the basis functions f(r) in cquation
(3). The role of the function f* is to improve the
convergence of the Grreen’s function solution.

The procedure for defining f* is discussed in refs.
[1, 2]. The procedure begins by defining a differ-
entiable temperature function that satisfies the non-
homogeneous boundary conditions of the first,
second, and third kinds. The function 7% is

T* = ¢y, (r)+ca. (5

In one-dimensional coordinates, the function u, takes
the value of x in Cartesian coordinates (r becomes x).
In (r) in radial cylindrical coordinates and —1/r in
spherical coordinates. For a prescribed heat flux at
both surfaces, the term c¢,r? replaces ¢.. The cal-
culation of ¢, and ¢, for non-homogencous boundary
conditions is elementary and requires solving two
equations for two unknowns, ¢, and ¢a.

COMPUTATIONAL STEPS

The steps leading to the temperature and heat flux
solution in sequential order are given below.

Basis functions

The computation begins by defining a set of basis
functions that satisfies the homogeneous boundary
conditions

kydfjdr=hf, at r=ua (6a)
—k,dfjdr=h.f, at r=#h (6b)

as
L= B+ o forj=1.2,....N. ()

In Cartesian coordinates,  is replaced by x.

The boundary conditions, equations (6a} and (6b),
determine the three coefficients, d,, §,, and #,. The §;
coefficient can be selected arbitrarily. The 9, coefficient
is set equal to the determinant of the coefficients in
the two equations when solving for f§, and . resulting
n

8, = alj—aB W j—1+hB:)—b(j+bB.Wji—1—aB))
(8a)
B, =a*(aB,—j—1)(j—1+b8,)

+b0 (0B, +j+1)ji—1—aB) (8b)
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and
;= —ab*(j—aB,)(bB,+j+1)—ba’(j+bB,)
x(aB,~j—-1) forj=1,23,....N (8)

where the parameters, 8, and B,, in equations (8a)—
(8c) are A,/k, and h,/k,. In special cases, when the
r = a surface is insulated, B, = 0; when the r = b
surface is insulated, B, = 0. If both surfaces, r = a
and b, are insulated, then B, = B, = 0. When the
boundary conditions are of the first kind, the respec-
tive heat transfer coefficients become infinite. There
are several ways of removing singularities : oneis using
the L’Hospital rule ; another is to recalculate the par-
ameters &, f§,, and #, using boundary condition(s) of
the first kind. For instance, the coefficients in equation
{8) when B, = o and B, = o are

6, =1, B, =—(a+b), andy = ab,

for j=1,2,3,....,N. (9

Equations (7) and (8) hold for all one-dimensional
conduction problems with homogeneous boundary
conditions in finite domains.

The polynomials are used to construct the basis
functions because they simplify all integrations lead-
ing to computation of the eigenvalues. The degree of
polynomials should not exceed 10, otherwise matrices
may become ill-conditioned. Polynomials of degree
5~7 usually yield accurate results for most practical
applications. Other polynomials such as Legendre and
Chebyshev can be used but their contribution is not
cost effective when the degree of the polynomial is
small.

Eigenvalues and eigenvectors

The computation of the eigenvalues and eigen-
vectors [1, 3] must be modified to include the fin effect
contribution. Although the equation that yields the
eigenvalues

(A+y,B)d, =0 (10

remains unchanged, the elements of matrix A are
modified by the fin effect

a,;= f SV (kVS) dV—f w(r) fif;dV.  (11)
[ v
The elements of matrix B

by= f e (1.1 AV (12)
will be unaffected by the fin effect. When &, p, c,, and
w are constant in any material layer, the identities
presented in ref. {1] provide the values of integrals.
The same identities can be used if these properties
are described by polynomials. The coefficients d,,,
d,s, ..., d,y in equation (10) are the elements of the
eigenvector d,. The eigenvalues and eigenvectors are
computed using the Jacobi method [4]. The com-
putation details are given in ref, {5]. The second term
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Fi1G. 1. Effectiveness, #. of straight fins with constant cross-
sectional area as a function of dimensionless time, /L7,

on the right-hand side of equation (11) vanishes in the
absence of the fin effect. Accordingly, the fin effect
influences only matrix A and function f*.

The coefficients d,, and p,, in equation (3) are the
elements of matrices D and P. The rows of matrix D
are the eigenvectors computed from equation (10).
The transpose of matrix DB, after it is inverted,
becomes matrix P,

RESULTS

The accuracy of the numerical results is illustrated
in Examples 1 and 2. Examples 3 and 4 show the scope
of this single-equation solution method.

Example 1

A simple example with a well-known solution
is selected to verify the accuracy of the results. A
straight fin with constant cross section and length
L has a simple steady-state solution. When T =1
at x=0, and ¢ =0 at x= L (insulated tip), the
steady-state temperature is cosh [m(L — x)}/cosh (mL)
and the effectiveness is » = tanh (mL)/mL, where
m = (hP/kA)"?, P is the perimeter, 4 the cross-sec-
tional area, h the heat transfer coefficient, and & the
thermal conductivity. The value of w in equation (1)
is AP/ A. Equation (2} is used to calculate the transient
and steady-state temperature field. Heat flux, and sub-
sequently the fin effectiveness, are calculated as a func-
tion of «z/L*. The results are shown in Fig. 1. The data
show that fins assume steady-state operation faster as
the value of m becomes larger.

The asymptotic values of effectiveness, as time
becomes infinite, are given in Table 1 for comparison
with the exact solution. The values ¢, =0 and ¢, =
T, = 1 are used for calculating T* in equation (5).
For all values of m, the data compare surprisingly
well despite using a constant value for T*. Table 1
indicates that for five eigenvalues (N = 5), results
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Table 1. Effectiveness using GBI method with different v
values for straight fins with uniform area

Exact

GBI solution

ml N=2 N=35 N= solution
0.0 1.00000 1.00000 1.00000 1.00000
0.2 0.98645 0.98688 0.98688 0.98688
0.4 0.94819 0.94988 0.94988 0.94987
0.6 0.89150 0.89508 0.89508 0.89508
0.8 0.82413 0.83005 0.83005 0.83005
1.0 0.75312 0.76159 0.76159 0.76159
1.2 0.68358 0.69472 0.69472 0.69471
1.4 0.61862 0.63240 0.63420 0.63239
1.6 0.55969 0.57605 0.57605 0.57604
1.8 0.50719 0.52599 0.52602 0.52600
2.0 0.46083 0.48200 0.48203 0.48201
2.2 0.42008 0.44349 0.44351 0.44352
24 0.38427 0.40983 0.40986 0.40986
2.6 0.35278 0.38034 0.38040 0.38040
2.8 0.32497 0.35443 0.35452 0.35451
3.0 0.30033 0.33158 0.33169 0.33169
3.5 0.24977 0.28500 0.28519 0.28519
4.0 0.21098 0.24951 0.24983 0.24983
4.5 0.18049 0.22169 0.22216 0.22217
5.0 0.15605 0.19931 0.19997 0.19998
6.0 0.11965 0.16550 0.16662 0.16667
8.0 0.07597 0.12250 0.12484 0.12500
10.0 0.09591 0.09961

0.05198

0.10000

obtained using the single-equation solution are as
accurate as those achieved by the exact solution.
Notice that 7* = 1 is a function that only satisfies
the boundary conditions: it is not the steady-state
solution.

Example 2

To show the utility of this single-equation solution,
consider a cylindrical body, p =1, with fin effect.
Here, the boundary conditions are: T=T, =1 at
r=r, and ¢ =0 at r = r.. It is indifferent to this
solution whether the heat flux or temperature is given
at the boundary. For boundary conditions of the third
kind at one or both boundaries, no additional steps
are required. Similar to Example 1, equation (1) is
used to obtain this solution. Except for the input
data, no other changes are made. Figure 2 shows
the effectiveness as a function of dimensionless time,
at/(r-—r,)", for different values of m = r,(w/k)"*.

To show the accuracy obtainable with the single-
equation solution, the steady-state effectiveness for
different r./r, ratios, for a range of values of m are
shown in Table 2. The data compare well with the
exact solution ; usually up to five significant figures.
All entries in Table 2 are for N = 9. Similar to Table
1, Table 3 contains the effectiveness calculated for
different values of N. Only one value of r,/r, is used
in this presentation. Tables 1 and 3 show that, when
N =5, sufficient accuracy is achieved for nearly all
practical applications.

The number of problems that can be solved using
this single-equation solution method is so large, only
a few examples can be presented. It accommodates
Cartesian, cylindrical. and spherical coordinates.
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FiG. 2. Effectiveness, n, of circular fins with rectangular
profile as a function of dimensionless time, xt/(r,—r,)°:
Fary = 2.

Example 3 describes heat conduction in a non-elemen-
tary fin. The fin effect in cylindrical and spherical
bodies is encountered in some heat transfer appli-
cations in bioengineering. Example 4 presents a case
where the fin effect exists in a body without fins.

Example 3

This example demonstrates the broad range of
problems that submit to this single-equation solu-
tion. A circular pin fin the radius, r, of which
varies as x°, when 0.5 < x/x, <1 is considered.
The perimeter varies as x° and the heat transfer
coefficient as x~°°. The boundary conditions arc
convective with hx,/k =0.02 at x = x, = x,/2 and
(T—THYT,~T;) = 1| at the base. If the heat transfer
coefficient at the fin’s surface variesasr ***or x~ °7,
then the quantity AP varies as x'°. Accordingly, in
this example. it is assumed that x3(hP/kA) =2x 7
the factor 2 is arbitrary. The temperature at various
locations along the fin is plotted as a function of at/x3
in Fig. 3. The same single-equation solution, with no
modifications, that produced the data presented in
Examples 1 and 2 was used to provide the data
presented in Fig. 3. The accuracy of these data is ex-
pected to be comparable with those tor the previous
examples.

Example 4

The more general form of the basis functions is
given in ref. [1]. The generalized form of the basis
functions permits solution for layered materials with
perfect or imperfect contact between layers. Consider
a two-layer cylinder the inner and outer radii of which
arer, and r,;r /r, = 0.6. The thicknesses of the layers
are equal. The inner layer is porous and the outer
layer is impermeable. It is assumed that the heat trans-
fers from the porous material to the working fluid.
The other input parameters for this problem are se-
lected mainly to demonstrate the range of capability
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Table 2. Fin effectiveness using GBI method and comparison with the exact solution for cylindrical fins
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ryfry = 1.2 ryfry = 1.5 rafry =20 ryfr, =3.0
m GBI Exact GBI Exact GBI Exact GBI Exact
0.0  1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.2 0.99941 0.99942 0.99592 0.99593 0.98148 0.98146 0.91601 0.91607
0.4 099766 0.99767 0.98392 0.98393 0.93025 0.93024 0.73696 0.73700
0.6 0.99477 0.99477 0.96466 0.96467 0.85710 0.85713 0.56485 0.56487
0.8 099%74 0.99075 0.93913 0.93914 0.77434 0.77434 0.43493 0.43494
1.0 0983563 0.98563 0.90852 0.90853 0.69153 0.69154 0.34349 0.34351
1.2 097946 0.97946 0.87413 0.87414 0.61464 0.61464 0.27932 0.27934
14 097229 0.97229 0.83723 0.83724 0.54630 0.54629 0.23330 0.23332
1.6  0.96416 0.96417 0.79900 0.79900 0.48705 0.48706 0.19933 0.19935
1.8  0.95515 0.95515 0.76035 0.76035 0.43642 0.43641 0.17351 0.17354
2.0 094531 0.94531 0.72211 0.72213 0.39335 0.39332 0.15338 0.15340
2.2 093471 0.93471 0.68493 0.68493 0.35667 0.35667 0.13728 0.13731
24 092341 0.92342 0.64915 0.64917 0.32543 0.32542 0.12415 0.12419
2.6 091151 0.91152 0.61513 0.61515 0.29864 0.29863 0.11328 0.11331
2.8 0.89905 0.89906 0.58300 0.58302 0.27557 0.27555 0.10410 0.10414
3.0 0.88612 0.88613 0.55282 0.55286 0.25553 0.25553 0.09629 0.09633
35 0.85215 0.85217 0.48590 0.48595 0.21573 0.21573 0.08099 0.08105
4.0 081665 0.81667 0.43018 0.43024 0.18632 0.18631 0.06980 0.06991
4.5  0.78049 0.78053 0.38398 0.38406 0.16378 0.16381 0.06133 0.06144
5.0 0.74443 0.74448 0.34559 0.34569 0.14607 0.14609 0.05460 0.05479
6.0 067474 0.67482 0.28642 0.28660 0.12000 0.12003 0.04471 0.04501
8.0 055316 0.55334 0.21159 0.21200 0.08821 0.08840 0.03249 0.03315
10.0  0.45861 0.45895 0.16783 0.16780 0.06953 0.06992 0.02510 0.02622
Table 3. Effectiveness using GBI method with different N 120 M T T T T T T T T T T T T )
values for straight cylindrical fins, r,/r, = 2 | 1
C =10
GBI solution Exact 1.00 | X/ Y]
m N=2 N=5 N=7 solution r X :
00 100000 100000 100000  1.00000 S osor ]
0.2 0.95567 0.98130 0.98145 0.98146 L - ]
04 0.90400 0.93008 0.93021 0.93024 = - E
0.6 083024 085698 085713  0.85713 ~ esor 3
0.8 0.74667 0.77418 0.77432 0.77434 e T 3
1.0 0.66302 0.69140 0.69153 0.69154 EL 0.40 ]
1.2 0.58523 0.61449 0.61463 0.61464 ~ L E
1.4 0.51605 0.54612 0.54629 0.54629 [ 1
1.6 0.45599 0.48688 0.48706 0.48706 0.20 E ]
1.8 0.40453 0.43621 0.43640 0.43641 UL ]
2.0 0.36067 0.39312 0.39332 0.39332 r
2.2 0.32328 0.35645 0.35667 0.35667 0.00 LAt G s
24 0.29133 0.32516 0.32541 0.32542 0.00 0.05 0.10 0.15 0.20 0.25
2.6 0.26388 0.29835 0.29862 (.29863 . ; 5 2
28 024018 027525 027553  0.27555 Dimensionless Time, at/x;
3.0 0.21958 025519 0.25552  0.25553 FiG. 3. Temperature at various locations along a pin fin as
35 017851 0.21528  0.21571 0.21573 a function of dimensionless time, cr/x2.
4.0 0.14811 0.18572 0.18628 0.18631
4.5 0.12490 0.16303 0.16378 0.16381
5.0 0.10673 0.14515 0.14603 0.14609 . L.
60  0.08042 0.11864 0.11991 0.12003 The heat loss by fin effect is also to the same inside
8.0  0.04999 0.08590 0.08807 0.08840 fluid. The temperature of fluid external to this cylin-
10.0 0.03381 0.06622  0.06923 0.06992 der is T,; and the initial temperature is 7,. In the di-

of this single-equation solution. Without any refer-
ence to specific applications, the parameters are
kifky = 0.5, (pe,)1/(pey)2 = 1, wirifky = 0.05, worl/
k, =0, g,ri/k, = 0.1, and g,ri/k, = 0. The dimen-
sionless heat transfer coefficients at r =r, and r=r,
are hry/k, = 2 and hyr;/k, = 5. The contact between
the two layers is imperfect and the dimensionless
contact conductance is Cr,/k, = 0.05. The fluid tem-
perature inside the inner surface of the cylinder is 7.

mensionless form, the initial temperature (7,—7,,)/
(T,—T,) = —1 is considered. Figure 4 shows the
temperature distribution, (I'—7,,)/(To.—To), as a
function of position, ¥/r,, for different values of a/r3.
The computer program used for the previous
examples yields each curve in Fig. 4 within 1 son a
personal computer system with Intel 80386-20/387
processors, The data in Fig. 4 are accurate for
af/r > 0.001. When at/r3 is much smaller, an ap-
proximate small time solution can be used.
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F1G. 4. Temperature distribution in a two layer, hollow
cylinder as a function of position, r/r,, for different values
of aufri.

CONCLUSION AND REMARKS

The solution method presented in ref. [1], after a
minor modification, leads to a single equation for solv-
ing most linear one-dimensional conduction problems.
The alternative Green’s function solution method is
extended to include the contribution of the fin
effect. Many different combinations of boundary
conditions and configurations can be solved by this
single-equation solution method. This is a new and
unique tool for research and teaching of heat transfer.
A personal computer and the computer program
developed for the single-equation technique yields solu-
tions to a multitude of problems. The exact solution
for many of these problems is formidable. The speed
of computing difficult problems is even faster than the
exact solutions the eigenvalue equation of which is
transcendental. The computation time for the basis
functions, eigenvalues, and matrices for the Green's
function depends on the number of basis functions, e.g.
for 2, 5, and 7 basis functions, the computation times
are 0.1, 0.8, and 1.7 s. The accuracy. as shown in
Examples 1 and 2, is more than sufficient for most
practical applications.

Despite the arbitrary selection of the function 7%
and subsequently f*, the solution given by equation
(2) is exact if the Green’s functions are exact. The
approximate single Green's function relation pro-
duced by the Galerkin-based integral method results

in a single equation that yields accurate solutions for
most linear one-dimensional conduction problems.
Despite the approximate nature of this single Green's
function relation. the accuracy of the heat-flux data
shown in Tables 1 and 2 is surprisingly good and
reveals the unique potential of this single-equation
solution approach.

The single-equation solution method is derived for
linear one-dimensional conduction problems. There
are some two-dimensional problems that can be
solved by the product solution of one-dimensional
problems. A few non-linear problems can be accom-
modated indirectly ; however. these are not essential
to this presentation and are not addressed here.

Further information on the Galerkin method can
be found in Kantorovich and Krylov [6]. The use of
the Galerkin method to solve the diffusion equation
was recognized decades ago [7]. It never received
serious attention. The Green’s function using the
Galerkin-based integral method was first reported
in ref. [8].

Acknowledgment—This work was supported by the Heat
Transfer Program of the National Science Foundation,
Grant No. CBT-8814934.
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SOLUTION D’UNE EQUATION UNIQUE POUR LA CONDUCTION DANS LES
AILETTES

Résumé—On présente une solution d’équation unique pour obtenir la température et le flux thermique

dans des corps finis monodimensionnels avec effet d’ailette. Quand cet effet est nul, cela conduit & un

champ de température et de flux dans des corps finis monodimensionnels. Les corps peuvent &tre 4 une

seule ou plusieurs couches. La solution correspond 4 la conduction variable mais elle donne la solution

permanente pour les temps élevés. On utilise une solution récente de fonction de Green. La fonction de

Green est calculée en utilisant la méthode intégrale Galerkin. Les exemples donnés ici sont pour des corps
4 une et deux couches.



A single-equation solution for conduction in fins

EINE EIN-GLEICHUNGS-LOSUNG FUR WARMELEITUNG IN RIPPEN

Zusammenfassung—Es wird eine Ein-Gleichungs-Losung zur Bestimmung von Temperatur und Wirme-
strom in vielen endlichen eindimensionalen Kérpern mit Rippeneffekten vorgestellt. Wenn der Rippen-
effekt gleich Null gesetzt wird, ergibt sich die Temperatur und der Wirmestrom in endlichen ein-
dimensionalen Korpern. Diese Korper konnen einfach oder mehrfach geschichtet sein. Die Ein-Gleichungs-
Losung gilt fiir den instationdren Fall, liefert jedoch fiir lange Zeiten die stationdre Lsung. Es wird ein
kiirzlich entwickeltes, alternatives Losungsverfahren verwendet, das auf der Green’schen Funktion beruht.
Die Green'sche Funktion wird mit Hilfe einer auf dem Galerkin-Verfahren basierenden Integralmethode
geldst. Es werden Beispiele fir einfach und zweifach geschichtete Kdrper vorgestellt.

PEIIEHHUE YPABHEHHA TEITJIONNPOBOJAHOCTU B PEBPAX, BLIPAXXEHHOE OJHUM
COOTHOIEHUEM

Ansoramus—IIpencrasieHo BhIpaXeHHOE OJHMM COOTHOLUEHHEM pelucHHe YPaBHEHHS [UIS TeMIepa-
TYpPHI # TEILIOBOTO NMOTOKa B 6OJIBIIOM YHC/Ie KOHEYHBIX OAHOMEPHBIX Tel C yueToM ddekTa opebpe-
Huid. Temnepatypa H TEIUIOBOH NOTOK B KOHEYHbIX OMHOMEPHBIX TEJIaX pPACCYMTHIBAJINCL B
npeanoyioxeHun oTcyTcTaus 3dhdexTa opebpenus. Mccnenyemuie Tes1a MOTyT OBITE Kak OAHOCIIOHHBIMH,
Tak ¥ MHOrocjodHsMH. CocTosiiee H3 OJHOIO COOTHOIUCHHS peELlEHHE YPaBHEHHS IOJIYyYEHO ILIs
C/Iy4aeB HECTALMOHAPHOM TEIUIONPOBOAHOCTH, OJHAKO NPH GOJBIINX BPEMEHAX OHO CTAHOBHTCH CTa-
unoHapHbiM. Mcnonpayercs HemaBuc paspaGoTaHHBIA a/IbTEPHATHMBHBIA METOH peIUeHHA QYHKLMM
[prHa, KOTOpas pacCYMTHIBANack HHTErpaibHbM MeTodoM [anepkuna. [IpuBeneHBl mpHMeEpH s
OZIHO- H ABYXCJIOHMHEIX TeEll.
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