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Abstract-A single-equation solution is presented for solving temperature and heat flux in many finite one- 
dimensional bodies with fin effect. When the fin effect is set equal to zero. it yields the temperature and 
heat flux in finite one-dimensional bodies. The bodies can be single layer or multilayer. The single-equation 
solution is for transient conduction but yields the steady-state solution at large times. A recently developed 
alternative Green’s function solution method is used. The Green’s function is calculated using the Galerkin- 

based integral method. The examples in this paper are for one- and two-layer bodies. 

INTRODUCTION 

A RECENT paper [l] introduced a technique for solving 

a variety of linear multidimensional thermal con- 
duction problems by a single equation. The single 
equation solution in this paper modifies the Alter- 
native Green’s Function Solution (AGFS) method [ 1, 
21 to include the fin effect. The AGFS uses an auxiliary 
source term in the solution equation. The Galerkin- 

based Integral (GBI) method [3] yields the Green’s 
function relation in the AGFS [I]. It is shown that 
minor changes will extend AGFS [I] to include the fin 

effect. Four thermal conduction examples for one- 
dimensional bodies with fin effect are presented. The 

method can include multidimensional bodies but this 
paper only addresses one-dimensional bodies. The 
product method provides the Green’s functions in 
some regular multidimensional bodies. 

The single-equation solution method applies to the 
diffusion equation in various finite bodies and in vari- 
ous coordinate systems. The procedure is described 
and the accuracy is compared with the exact solution 
for a selected case. The observed accuracy is excellent 
and exceeds expectations. The single-equation solu- 
tion yields accurate temperature and heat flux on a 
personal computer immediately after the data are 
entered. 

The single-equation approach is not limited to fins ; 
it can yield temperature and heat flux in solid cylin- 
ders and spheres for the diffusion equation in bio- 
engineering applications. Ignoring the fin effect 
results in the solution of standard one-dimensional 
conduction problems. The solids under consideration 
can be multilayered but only one example considers 
a two-layer body. The solution holds for transient 
and steady-state problems. 

ANALYSIS 

The transient diffusion equation for one-dimen- 
sional problems used in this paper is 

V* LW)V~+g(r, t)-w(r)T = p(r)c,(r)dT/& (1) 

where T = T(r, t) is the temperature, g the volumetric 
heat source, p the density, c,, the specific heat, k the 
thermal conductivity, and r represents Cartesian, 
cylindrical, or spherical coordinates. The term 
V* [k(r)VT] on the left-hand side of equation (l), in 
this paper, is (I/r”)a[k(r)r”iiT/&-I/&, where p = 0, 1, 
or 2 for Cartesian, cylindrical, or spherical coordi- 
nates. The coefficient p takes other positive real 
numbers for fins. The thermophysical properties p(r), 

c,,(r), and k(r) are position-dependent density, specific 
heat, and thermal conductivity. The term w(r)T is the 
fin convective effect. 

The alternative Green’s function solution equation 

for heterogeneous materials [l] is 

1 
W. t) = T*(r, t) + ___ 

&k,(r) 

X Is’ s dr G[J‘* +g(r’, 7) 
r=O C’ 

-p(r’)c,,(r’)~T*(r’,~)/~t] dV’ 

+ 
s 

p(r’)c,,(r’)GI, = ,[F(r’) - T*(r’, O)] dV’ 
c 

1’1, 

where G = G(r’, --tlr, -t) = G(r’, tlr, 7) is given by 

G(r’. 4r. 7) = &%,(r) 2 ? i 4,~“; 
II= I,= I,= I 

xew [-l;,(t-t)lf;(r’)f;(r). (3) 

The parameters pni and d,, are documented in ref. [3]. 
The fin effect does not change equation (2) or (3) and 
the relations given in ref. [I] remain unchanged. 

The function T* is an auxiliary function defined 
to satisfy the non-homogeneous boundary conditions 
but it is not necessarily the steady-state or quasi- 
steady-state solution. Only the function T* contains 
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NOMENCLATURE 

a, h geometrical dimensions [m] PI,* element of matrix P 

a,, element of matrix A, equation (1 I] P inverse of transpose of matrix (DB) 
A matrix t radial coordinate 

h,, element of matrix B. equation ( i3) r* dummy variable 
B matrix s surface 
B,, B, ratio of hrjk,. hz/X-, t time [s] 

: 

specific heat [J kg ’ K- ‘1 T temperature [K] 
conductance [W rn-- ’ K ‘1 r, initial temperature dist~bution [K] 

(1’2, coefficients. equation (3) r, surface temperature [K] 

d,, eigenvector with elements &z,. equation T* auxiliary solution. e.g. equation (5) 

(10) P volume [m ‘1 
D matrix with element d,,, II fin factor [W m ’ Km-‘] 

.f ; basis functions s Cartesian coordinate [ml. 

,f’” function defined in equation (4) 

F(r) initial temperature distrjbution 

.q energy generation per unit time and per 
Greek symbols 

unit volume [W mm ‘1 
u thermal diffusivity [m” s ‘1 
II 

G Green’s function, G(r’, - t]r, -t) , !I eigenvalues 

/I heat transfer coefficient [W m -- ’ K ‘J I’ density [kg m- ‘1 

i, .j indices 
1: time ; also dummy variable. 

k thermal conductivity [W rn-- ’ K ‘] 
L length [m] Subscripts 
111 hctor, (rr./k)“,5 1 parameter at small dimension 
n index 2 parameter at large dimension 
N number of eigenvalues b temperature of the fin at the base 

P index 0 fluid temperature. 

the contribution of non-homogeneous boundary COMPUTATIONAL STEPS 

conditions. The function .f”, appearing as a source 
term in equation (2), compensates for the arbitrary 
nature of T* and is given by the relation 

,f’*(r’. T) = V,, * [kV, T*(r’, T,] - W(Y) T* (4) 

where V, implies the derivatives are in r’ space. If 
,f*(r’, z) = 0 and w(r) = 0, then T*(r’, z) satisfies the 

Laplace equation and it is the quasi-steady solution. 
Note that the function ,f’*(r’. T) defined by equation 
(4) is unrelated to the basis functions ,f;(r) in equation 
(3). The role of the function f’* is to improve the 
convergence of the Green’s function solution. 

The procedure for defining f’* is discussed in refs. 
[I, 21. The procedure begins by defining a differ- 
entiable temperature function that satisfies the non- 
homogeneous boundary conditions of the first, 
second. and third kinds. The function 7‘” is 

7”” = c,u,,(r)+c2. (5) 

In one-dimensional coordinates, the function u,, takes 
the value of .x in Cartesian coordinates (r becomes x). 
In (Y) in radial cylindrical coordinates and - lir in 
spherical coordinates. For a prescribed heat flux at 
both surfaces, the term c2rz replaces c2. The cal- 
culation of c, and c2 for non-homogeneous boundary 
conditions is elementary and requires solving two 
equations for two unknowns. c, and e7. 

The steps leading to the temperature and heat flux 
solution in sequential order are given below. 

The computation begins by defining a set of basis 
functions that satisfies the homogeneous boundary 
conditions 

k , d,f;jdr = ir , ./; at I’ = a itiaf 

-k2 d,f;/dr = h,,f; at r = h (6b) 

3S 

,I; = (S,ly2 +p,r+v,)r’ ’ : for ,j = 1.2,. . , N. (7) 

In Cartesian coordinates, Y is replaced by x:. 
The boundary conditions, equations (6a) and (6b), 

determine the three coefficients, 6,. p,, and Q. The 6i 
coefficient can be selected arbitrarily. The 6, coefficient 
is set equal to the determinant of the coefficients in 
the two equations when solving for /I, and q,, resulting 
in 

6, = a(.j-uB,)(,j- 1 +hB2)-&j+hB2)(J-- 1 -aB,) 

(8a) 

8, = a”(&, -j- I)(j- I +hB,) 

+h’(hB2+j-!- l)(,j- i -al?,) (8b) 
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and 10 

ylj = -ab’(j-aB,)(b& +i+ 1) -bd(j+bB,) 

x(aB,-j-1) forj= 1,2,3 ,.._, N (8~) 

where the parameters, B, and B2, in equations @a)-- 
(8~) are h,/k, and hJk,. In special cases, when the 
r = a surface is insulated, B, = 0; when the r = h 

surface is insulated, B2 = 0. If both surfaces, r = a 

and b, are insulated, then B, = B2 = 0. When the 
boundary conditions are of the first kind, the respec- 
tive heat transfer coe~cients become infinite. There 
are several ways of removing singularities : one is using 
the L’Hospital rule ; another is to recalculate the par- 
ameters 4, [j,, and q, using boundary condition(s) of 
the first kind. For instance, the coefficients in equation 
(8) when B, = cc and B2 = 0~: are 

011 
‘0.0 1.0 2.0 3.0 4.0 5.0 

Dimensionless Time, at/L’ 

Si = 1, /?, = -fa+b), and ‘I, = ab, 

forj= 1,2,3 ,..., N. (9) 

Equations (7) and (8) hold for all one-dimensional 
conduction problems with homogeneous boundary 
conditions in finite domains. 

FIG. I. Effectiveness, q. of straight fins with constant cross- 
sectional area as a function of dimensionless time, H/L’. 

The polynomials are used to construct the basis 
functions because they simplify all integrations lead- 
ing to computation of the eigenvalues. The degree of 
polynomials should not exceed 10, otherwise matrices 
may become ill-conditioned. Polynomials of degree 
5-7 usually yield accurate results for most practical 
applications. Other polynomials such as Legendre and 
Chebyshev can be used but their contribution is not 
cost effective when the degree of the polynomial is 
small. 

on the right-hand side of equation (11) vanishes in the 
absence of the fin effect. Accordingly, the fin effect 
influences only matrix A and function f*. 

The coefficients d,, and pw in equation (3) are the 
elements of matrices D and P. The rows of matrix D 
are the eigenvectors computed from equation (10). 
The transpose of matrix DB, after it is inverted, 
becomes matrix P. 

Eigeraoalues and eigenvectors 
The computation of the eigenvalues and eigen- 

vectors [l, 37 must be modified to include the fin effect 
contribution. Although the equation that yields the 
eigenvalues 

The accuracy of the numerical results is illustrated 
in Examples 1 and 2. Examples 3 and 4 show the scope 
of this single-equation solution method. 

Example 1 

(A+y,B)d,, = 0 (10) 

remains unchanged, the elements of matrix A are 
modified by the fin effect 

A simple example with a well-known solution 
is selected to verify the accuracy of the results. A 
straight fin with constant cross section and length 
L has a simple steady-state solution. When T = 1 
at x = 0, and q = 0 at .Y = L (insulated tip), the 
steady-state temperature is cash [m(L-x)]/cosh (mL) 
and the effectiveness is 4 = tanh (mL)/mL, where 
m = (kP/kA)‘j’, P is the perimeter, A the cross-sec- 
tional area, h the heat transfer coefficient, and k the 
thermal conductivity. The value of ~1 in equation (1) 
is APIA. Equation (2) is used to calculate the transient 
and steady-state temperature field. Heat flux. and sub- 
sequently the fin effectiveness, are calculated as a func- 
tion of at/Z,“. The results are shown in Fig. 1. The data 
show that fins assume steady-state operation faster as 
the value of m becomes larger. 

u,~ = ,f;V.(kVf;) dI’-- iv(r)JJdV. (11) 
s b. s p 

The elements of matrix B 

will be unaffected by the fin effect. When k, p, cp, and 
u’ are constant in any material layer, the identities 
presented in ref. [l] provide the values of integrals. 
The same identities can be used if these properties 
are described by polynomials. The coefficients d,,, 
d *12,. . . > dnN in equation (10) are the elements of the 
eigenvector d,. The eigenvalues and eigenvectors are 
computed using the Jacobi method [4]. The com- 
putation details are given in ref. [5]. The second term 

RESULTS 

The asymptotic values of effectiveness, as time 
becomes infinite, are given in Table 1 for comparison 
with the exact solution. The values c, = 0 and c2 = 
T,, = 1 are used for calculating T* in equation (5). 
For all values of nz, the data compare surprisingly 
well despite using a constant value for T*. Table 1 
indicates that for five eigenvalues (N = 5), results 



Table I. Effectiveness using GBI method with dlt~ercnt ,I 
vslurs for straight fins with uniform arca 

,lIL h’ = 7 

0.0 I .ooooo 
0.2 0.98645 
0.4 0.94819 
0.6 0.89150 
0.X 0.82413 
I .o 0.75317 
I.2 0.68358 
I.4 0.61862 
1.6 0.55969 
1.X 0.50719 
1.0 0.460X3 
1.2 0.42008 
2.4 0.38417 
2.6 0.35778 
3.x 0.33497 
3.0 0.30033 
3.5 0.14977 
4.0 II.71098 
4.5 0.18049 
5.0 0.15605 
6.0 0. I 1965 
8.0 0.075Y7 

10.0 0.0519X 

GBI solution 
Iv = 7 

Euact 
solution 

I .ooooo I .ooooo I .ooooo 
0.98688 0.98688 0.98688 
0.94988 0.94988 0.94987 
0.89508 0.89508 0.89508 
0.X3005 0.83005 0.83005 
0.76 I59 0.76159 0.76 I59 
0.69477 0.69472 0.6Y471 
0.63240 0.63430 0.63239 
0.57605 0.57605 0.57604 
0.51599 0.52603 0.51600 
0.48700 0.48303 0.4820 I 
0.44349 0.4435 I 0.44352 
0.40983 0.40986 0.40986 
0.38034 0.3X040 0.3x040 
0.35443 0.35352 0.35451 
0.33158 0.33169 0.33169 
0.3X500 02x5 I9 0.28519 
0.~495 I 0.149X3 0.24983 
0.2169 0.27116 0.22117 
O.IYY31 0.19997 0.19998 
0.16550 0. I6662 0.16667 
0.1’250 0.12484 0.12500 
0.09591 0.0996 I 0.10000 

obtained using the single-equation solution are as 
accurate as those achieved by the exact solution. 
Notice that T* = 1 is a function that only satisfies 
the boundary conditions; it is not the steady-state 
solution. 

Example 2 
To show the utility of this single-equation solution, 

consider a cylindrical body, p = 1. with fin effect. 
Here, the boundary conditions are: T= 7-, = 1 at 
r = r, and q = 0 at r = r2. It is indifferent to this 

solution whether the heat flux or temperature is given 
at the boundary. For boundary conditions of the third 
kind at one or both boundaries, no additional steps 
are required. Similar to Example 1, equation (1) is 
used to obtain this solution. Except for the input 
data, no other changes are made. Figure 2 shows 
the effectiveness as a function of dimensionless time. 
xt,f(r,-r,)‘, for different values of 1~1 = u,(~/k)” ‘. 

To show the accuracy obtainable with the single- 
equation solution, the steady-state effectiveness for 
different r?/r, ratios, for a range of values of m are 

shown in Table 2. The data compare well with the 
exact solution; usually up to five significant figures. 
All entries in Table 2 are for N = 9. Similar to Table 
I, Table 3 contains the effectiveness calculated for 
different values of N. Only one value of r2jr, is used 
in this presentation. Tables 1 and 3 show that, when 
N = 5. sufficient accuracy is achieved for nearly all 
practical applications. 

The number of problems that can be solved using 
this single-equation solution method is so large, only 
a few examples can be presented. It accommodates 
Cartesian, cylindrical. and spherical coordinates. 

O.b.i 1.0 2.0 3.0 4.0 5.0 

Dimensionless Time, at/(rz-r,)” 

FIG. 2. Effectiveness. ‘1, of circular fins with rectangular 
profile as a function of dimensionless time. rr/(r2 --1.,)? : 

r,jr, = 2. 

Example 3 describes heat conduction in a non-elemen- 

tary fin. The fin effect in cylindrical and spherical 
bodies is encountered in some heat transfer appli- 

cations in bioengineering. Example 4 presents a case 
where the fin effect exists in a body without fins. 

E.yample 3 
This example demonstrates the broad range of 

problems that submit to this single-equation solu- 
tion. A circular pin fin the radius, r, of which 
varies as .x’, when 0.5 < s/s, < 1 is considered. 
The perimeter varies as .I.’ and the heat transfer 
coefficient as I -” ‘. The boundary conditions arc 
convective with lz.xJk = 0.02 at s = _x, = x2/2 and 

(T- T,)/( Th - T,) = I at the base. If the heat transfer 
coefficient at the fin’s surface varies as r “.” or .Y- ” i. 
then the quantity hP varies as X’ ‘, Accordingly, in 
this example. it is assumed that .\-$(hP/kA) = 3s ’ ’ ; 
the factor 2 is arbitrary. The temperature at various 
locations along the fin is plotted as a function of at/r: 
in Fig. 3. The same single-equation solution, with no 
modifications. that produced the data presented in 
Examples I and 2 was used to provide the data 
presented in Fig. 3. The accuracy of these data is ex- 
pected to be comparable with those for the previous 
examples. 

E.rample 4 
The more general form of the basis functions is 

given in ref. [I]. The generalized form of the basis 
functions permits solution for layered materials with 
perfect or imperfect contact between layers. Consider 
a two-layer cylinder the inner and outer radii of which 
are r , and r2 ; r , /r2 = 0.6. The thicknesses of the layers 
are equal. The inner layer is porous and the outer 
layer is impermeable. It is assumed that the heat trans- 
fers from the porous material to the working fluid. 
The other input parameters for this problem are se- 
lected mainly to demonstrate the range of capability 
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Table 2. Fin effectiveness using CBI method and comparison with the exact solution for cylindrical fins 
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r2/r, = 1.2 rJr, = 1.5 rz/r, = 2.0 r2/r, = 3.0 
m GBI Exact GBI Exact GBI Exact GBI Exact 

0.0 1 .ooooo 1.00000 
0.2 0.99941 0.99942 
0.4 0.99766 0.99767 
0.6 0.99477 0.99477 
0.8 0.99074 0.99075 
I.0 0.98563 0.98563 
1.2 0.97946 0.97946 
I.4 0.97229 0.97229 
1.6 0.96416 0.96417 
1.8 0.95515 0.95515 
2.0 0.9453 I 0.9453 f 
2.2 0.93471 0.93471 
2.4 0.92341 0.92342 
2.6 0.91151 0.91152 
2.8 0.89905 0.89906 
3.0 0.88612 0.88613 
3.5 0.85215 0.85217 
4.0 0.81665 0.81667 
4.5 0.78049 0.78053 
5.0 0.74443 0.74448 
6.0 0.67474 0.67482 
8.0 0.553I6 0.55334 

IO.0 0.4586I 0.45895 

1,00000 
0.99592 
0.98392 
0.96466 
0.93913 
0.90852 
0.87413 
0.83723 
0.79900 
0.76035 
0.72211 
0.68493 
0.64915 
0.61513 
0.58300 
0.55282 
0.48590 
0.43018 
0.38398 
0.34559 
0.28642 
021159 
0.16783 

1.00000 1.00000 f .ooooo 1 .oOoOO 1 .ooOOo 
0.99593 0.98 148 0.98146 0.91601 0.91607 
0.98393 0.93025 0.93024 0.73696 0.73700 
0.96467 0.85710 0.85713 0.56485 0.56487 
0.93914 0.77434 0.77434 0.43493 0.43494 
0.90853 0.69153 0.69154 0.34349 0.34351 
0.87414 0.61464 0.61464 0.27932 0.27934 
0.83724 0.54630 0.54629 0.23330 0.23332 
0.79900 0.48705 0.48706 0.19933 0.19935 
0.76035 0.43642 0.43641 0.17351 0.17354 
0.72213 0.39335 0.39332 0.15338 0.15340 
0.68493 0.35667 0.35667 0.13728 0.13731 
0.64917 0.32543 0.32542 0.12415 0.12419 
0.61515 0.29864 0.29863 0.f 1328 0.11331 
0.58302 0.27557 0.27555 0.10410 0.10414 
0.55286 0.25553 0.25553 0.09629 0.09633 
0.48595 0.21573 0.2 1573 0.08099 0.08 105 
0.43024 0.18632 0.18631 0.06980 0.0699 1 
0.38406 0. I6378 0.16381 0.06133 0.06144 
0.34569 0.14607 0.14609 0.054~ 0.05479 
0.28660 0.12000 0.12003 0.0447 I 0.04501 
0.21200 0.08821 0.08840 0.03249 0.033f5 
0.16780 0.06953 0.06992 0.02510 0.02622 

- 

Table 3. Effectiveness using GBI method with different N 
values for straight cylindrical fins, r.,/r , = 2 

GBI solution Exact 
m N=2 N=5 N=7 solution 

0.0 1.00000 MxKloo 1 .oOOOO 1 .OOoOO 
0.2 0.95567 0.98130 0.98 145 0.98146 
0.4 0.~4~ 0.93~8 0.9302 1 0.93024 
0.6 0.83024 0.85698 0.85713 0.85713 
0.8 0.74667 0.77418 0.77432 0.77434 
1.0 0.66302 0.69140 0.69153 0.69154 
1.2 0.58523 0.61449 0.61463 0.61464 
1.4 0.51605 0.54612 0.54629 0.54629 
1.6 0.45599 0.48688 0.48706 0.48706 
1.8 0.40453 0.43621 0.43640 0.43641 
2.0 0.36067 0.39312 0.39332 0.39332 
2.2 0.32328 0.35645 0.35667 0.35667 
2.4 0.29133 0.32516 0.32541 0.32542 
2.6 0.26388 0.29835 0.29862 0.29863 
2.8 0.24018 0.27525 0.27553 0.27555 
3.0 0.21958 0.25519 0.25552 0.25553 
3.5 0.17851 0.21528 0.21571 0.21573 
4.0 0.14811 0.18572 0.18628 0.18631 
4.5 0.12490 0.16305 0.16378 0.16381 
5.0 0.10673 0.14515 0.14603 0.14609 
6.0 0.08042 0.11864 0.11991 0.12003 
8.0 0.04999 0.08590 0.08807 0.08840 

10.0 0.03381 0.06622 0.06923 0.06992 

of this single-equation solution. Without any refer- 
ence to specific applications, the parameters are 
k,/k, = 0.5, (pcJ ,/(pc,J2 = 1, w,r:/k2 = 0.05, wZr:/ 
k2 = 0, g,riJkz = 0.1, and g&k, = 0. The dimen- 
sionless heat transfer coefficients at r = r, and r = r7 
are hlrZ/k2 = 2 and h,rJk, = 5. The contact between 
the two layers is im~~ect and the dimensionless 
contact conductance is Cr,/k, = 0.05. The fluid tem- 
perature inside the inner surface of the cylinder is T,, . 

1.00 
x/x0=1.0 - 

0.9 - 

0.5 : 

I,,,,,*,._, ,,*I,*,,,, ,,& 

0.00 0.05 0.10 0.15 0.20 0.25 

Dimensionless Time, at/xza 

FIG. 3. Temperature at various locations along a pin fin as 
a function of dimensionless time, cct/;r& 

The heat loss by fin effect is also to the same inside 
fluid. The temperature of ffuid external to this cylin- 
der is To2 and the initial temperature is T,. In the di- 
mensionless form, the initial temperature (r - To,)/ 
(T,, - T,,,) = - 1 is considered. Figure 4 shows the 
temperature distribution, (T- ?“,,)/(r,, - To,), as a 
function of position, r/r,, for different values of w/r:. 
The computer program used for the previous 
examples yields each curve in Fig. 4 within 1 s on a 
personal computer system with Intel 8038~20/387 
processors. The data in Fig. 4 are accurate for 
~r/r: > 0.001. When @f/r: is much smaller, an ap- 
proximate small time sotution can be used. 



Dimensionless Position, r/r2 

FIG. 4. Temperature distribution in a two layer, hollow 
cylinder as a function of position, r/r,, for different values 

of XI/r;. 

CONCLUSION AND REMARKS 

The solution method presented in ref. [l]. after a 
minor modification, leads to a single equation for solv- 
ing most linear one-dimensional conduction problems. 
The alternative Green’s function solution method is 
extended to include the contribution of the fin 

effect. Many different combinations of boundary 
conditions and configurations can be solved by this 
single-equation solution method. This is a new and 
unique tool for research and teaching of heat transfer. 

A personal computer and the computer program 
developed for the single-equation technique yields solu- 
tions to a multitude of problems. The exact solution 
for many of these problems is formidable. The speed 
of computing difficult problems is even faster than the 
exact solutions the eigenvalue equation of which is 
transcendental. The computation time for the basis 
functions, eigenvalues, and matrices for the Green’s 

function depends on the number of basis functions, e.g. 
for 2, 5. and 7 basis functions, the computation times 

are 0.1. 0.8. and 1.7 s. The accuracy. as shown in 
Examples 1 and 2, is more than sufficient for most 
practical applications. 

Despite the arbitrary selection of the function T* 

and subsequently ,f’*. the solution given by equation 
(2) is exact if the Green’s functions are exact. The 
approximate single Green’s function relation pro- 
duced by the Galerkin-based integral method results 

in a single equation that yields accurate solutions for 
most linear one-dimensional conduction problems. 
Despite the approximate nature of this single Green’s 
function relation. the accuracy of the heat-flux data 
shown in Tables 1 and 2 is surprisingly good and 
reveals the unique potential of this single-equation 
solution approach. 

The single-equation solution method is derived for 

linear one-dimensional conduction problems. There 

are some two-dimensional problems that can be 
solved by the product solution of one-dimensional 

problems. A few non-linear problems can be accom- 
modated indirectly ; however. these are not essential 
to this presentation and are not addressed here. 

Further information on the Galerkin method can 

be found in Kantorovich and Krylov [6]. The use of 
the Galerkin method to solve the diffusion equation 

was recognized decades ago [7]. It never received 
serious attention. The Green’s function using the 
Galerkin-based integral method was first reported 
in ref. [8]. 
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SOLUTION DUNE EQUATION UNIQUE POUR LA CONDUCTION DANS LES 
AILETTES 

R&sum&On prtsente une solution d’tquation unique pour obtenir la temperature et le flux thermique 
dans des corps finis monodimensionnels avec effet d’ailette. Quand cet effet est nul, cela conduit a un 
champ de temperature et de flux dans des corps finis monodimensionnels. Les corps peuvent etre a une 
seule ou plusieurs couches. La solution correspond a la conduction variable mais elle donne la solution 
permanente pour les temps eleves. On utilise une solution recente de fonction de Green. La fonction de 
Green est calculte en utilisant la methode integrale Galerkin. Les exemples donnts ici sont pour des corps 

a une et deux couches. 



A single-equation solution for conduction in fins 165 

EINE EIN-GLEICHUNGS-LijSUNG FUR WARMELEITUNG IN RIPPEN 

Zusammenfassung-Es wird eine Ein-Gleichungs-Losung zur Bestimmung von Temperatur und Warme- 
Strom in vielen endlichen eindimensionalen Kdrpern mit Rippeneffekten vorgestellt. Wenn der Rippen- 
effekt gleich Null gesetzt wird. ergibt sich die Temperatur und der Wirmestrom in endlichen ein- 
dimensionalen Korpern. Diese Kiirper kiinnen einfach oder mehrfach geschichtet sein. Die Ein-Gleichungs- 
Losung gilt fiir den instationaren Fall, liefert jedoch fur lange Zeiten die stationare Losung. Es wird ein 
kiirzlich entwickeltes, alternatives Losungsverfahren verwendet, das auf der Green’schen Funktion beruht. 
Die Green’sche Funktion wird mit Hilfe einer auf dem Galerkin-Verfahren basierenden Integralmethode 

gel&t. Es werden Beispiele fur einfach und zweifach geschichtete Kiirper vorgestellt. 

PEIIIEHHE YPABHEHHII TEIIJTOI-IPOBO~HOCTH B PEEPAX, BbIPmEHHOE OAHMM 
COOTHOIIIEHHEM 

.4nssox~ITpencrannetto sbrpaxceeaoe onmi~ cooTttomemieh9 pemetme ypamiemix n.an Tehmepa- 
Tflbl H TeMOBOrO IlOTOKa B 60n1.mo~ 'IHCne KOHeWbIX OLlHOMepHbIX Ten C Y'feTOM 3'Zj@KTa Ope6p~9 

HH~. TeeMneparypa H TelIJIOBOii ~OTOK B KOHeSHbIX OJnloMepHbtx Tenax pWC¶liTbWUlHCb B 

n~r(nOnO*eH~HOTC~~BEK~~aO~6~HHK.M~ne~yeMbleTenaMOr~6hITb KaK OAHOCJIOkHbIMH, 

TBK H hmorocnoiiHbmrr. Comomuee l-i!3 omoro COOTHOIUeHHX pemeHHe ypaBHeHHn nonpea J&JIn 

CJIyYaeB HeCTaUHOHapHOii TeILJlOII~BO.llHOCTH, OLUiaKO IIpH 6OnbmHX BPeMeHaX OH0 CTBHOBEiTCB CTa- 

l(EiOHBPHblM. knOAb3,‘~CK HCABBHO &kl3pa60Ti3HHbIi-i UIbTCpHaTHBHbIii MCTOA ~IUCHHIl ~)‘HKLUiH 

TpHHa, KOTOpUl pXC’iHTblBtUlXb HHTClJXUIbHbIM MCTOAOM kJICpKHHa. npH!XACHbl IlpHMCpbI AAK 

o~fio- H AByxCA0iim Ten. 


